Solicitud de Propuesta: Solución de Software de Sistema de

Ejecución de Manufactura (MES)

Índice

- 1. Introducción y antecedentes
- 2. Requisitos técnicos
- 3. Requisitos funcionales
- 4. Requisitos de la inteligencia artificial
- 5. Requisitos de aplicación
- 6. Requisitos de los proveedores
- 7. Criterios de evaluación
- 8. Normas de presentación
- 9. Calendario y proceso

1. 1. Introducción y antecedentes

1.1 Organización

[Nombre de la empresa] busca propuestas para una solución de software integral de sistema de ejecución de fabricación (MES) con el fin de mejorar nuestras operaciones de fabricación y proporcionar control y visibilidad en tiempo real en todas nuestras instalaciones de producción.

1.2 Objetivo del proyecto

Esta RFP describe nuestros requisitos para una solución MES que sirva de puente entre nuestros sistemas de planificación de recursos empresariales (ERP) y las operaciones de taller, proporcionando capacidades integrales de gestión de la producción, control de calidad y optimización del rendimiento.

1.3 Entorno actual

Los sistemas actuales en uso incluyen [Enumerar sistemas] Número de instalaciones: [Número] Número de líneas de producción: [Número] Retos actuales: [Enumerar los retos] Requisitos de integración: [Enumere los requisitos]

2. Requisitos técnicos

2.1 Arquitectura del sistema

- Arquitectura escalable y modular adaptable a las cambiantes necesidades de fabricación
- Compatibilidad con modelos de implantación basados en la nube, locales o híbridos
- Capacidad de redundancia del sistema
- Arquitectura de alta disponibilidad
- Capacidad de equilibrio de carga

2.2 Gestión de datos

- Recogida y tratamiento de datos en tiempo real
- Capacidad de almacenamiento de datos a gran escala
- Mecanismos de copia de seguridad y recuperación de datos
- Políticas de archivo y conservación de datos
- Requisitos de gestión de bases de datos
- Procesos de validación y verificación de datos

2.3 Requisitos de integración

- Integración bidireccional de ERP
- Integración de sistemas SCADA
- Integración de sistemas PLM
- Integración de sistemas en la cadena de suministro
- Integración de la gestión de activos empresariales
- Soporte de API y servicios web

Compatibilidad con protocolos estándar

2.4 Requisitos de seguridad

- Autenticación y autorización de usuarios
- Control de acceso basado en funciones.
- Cifrado de datos (en reposo y en tránsito)
- Registro de auditoría de seguridad
- Cumplimiento de las normas de seguridad
- Requisitos de seguridad de la red
- Seguridad de acceso remoto

2.5 Requisitos de rendimiento

- Tiempos de respuesta del sistema
- Capacidad de procesamiento de transacciones
- Asistencia a usuarios simultáneos
- Volúmenes de tratamiento de datos
- Rendimiento de la generación de informes
- Objetivos de disponibilidad del sistema
- Objetivos de tiempo de recuperación
- Objetivos del punto de recuperación

3. 3. Requisitos funcionales

3.1 Planificación y programación de la producción

Consejo: La planificación y programación eficaces de la producción son fundamentales para las operaciones de fabricación, ya que requieren capacidad de adaptación y optimización en tiempo real. El sistema debe admitir cambios dinámicos en la programación, limitaciones de recursos y planificación de la capacidad, al tiempo que mantiene la sincronización con los procesos anteriores y posteriores para garantizar un flujo de producción óptimo.

Requisito	Subrequisito	S/N	Notas
Planificación de la producción	Creación de planes de producción en tiempo real		
	Modificación dinámica del plan		
	Planificación basada en la capacidad		
	Planificación de las necesidades de material		
Programación	Programación basada en los recursos		
	Optimización dinámica de horarios		
	Programación basada en restricciones		
	Programación en varios centros		
Órdenes de trabajo	Generación de órdenes de trabajo		
	Gestión de prioridades		
	Seguimiento de la situación		
	Gestión de rutas		

3.2 Gestión de recursos

Consejo: La funcionalidad de gestión de recursos debe proporcionar un seguimiento exhaustivo y la optimización de todos los recursos de fabricación, incluidos los equipos, el personal, las herramientas y los materiales. El sistema debe permitir la asignación de recursos en tiempo real, la supervisión del estado y la planificación predictiva de recursos, al tiempo que mantiene registros históricos detallados para su análisis y optimización.

Requisito	Subrequisito	S/N	Notas
Gestión de equipos	Seguimiento del estado de los equipos		
	Control del rendimiento		

	Seguimiento de la utilización	
	Planificación de capacidades	
Gestión de personal	Seguimiento de habilidades	
	Gestión de la disponibilidad	
	Seguimiento de la certificación	
	Asignación de mano de obra	
Gestión de herramientas	Seguimiento del inventario de herramientas	
	Gestión de la calibración	
	Seguimiento de la utilización	
	Programación del mantenimiento	

3.3 Ejecución de la producción

Consejo: Las capacidades de ejecución de la producción deben proporcionar visibilidad y control en tiempo real de todas las operaciones de fabricación, garantizando un seguimiento preciso de las órdenes de trabajo, los materiales y los recursos. El sistema debe permitir una respuesta inmediata a los problemas de producción, al tiempo que mantiene registros detallados de todas las actividades y respalda las iniciativas de mejora continua.

Requisito	Subrequisito	S/N	Notas
Ejecución de órdenes de trabajo	Seguimiento de la tramitación de pedidos		
	Actualizaciones de estado en tiempo real		
	Control de la secuencia de producción		
Seguimiento laboral	Control de la actividad de los operadores		

	Control del tiempo	
	Control del rendimiento	
Seguimiento del material	Control del consumo	
	Actualizaciones de inventario en tiempo real	
	Seguimiento del movimiento de materiales	
Control de la producción	Recuentos de producción en tiempo real	
	Control del tiempo de ciclo	
	Seguimiento del tiempo de inactividad	

3.4 Gestión de la calidad

Consejo: La gestión de la calidad debe integrar funciones de supervisión en tiempo real, control estadístico de procesos y documentación exhaustiva. El sistema debe respaldar el aseguramiento proactivo de la calidad mediante mecanismos automatizados de recopilación de datos, análisis y alerta, al tiempo que mantiene registros detallados a efectos de cumplimiento y mejora continua.

Requisito	Subrequisito	S/N	Notas
Control de calidad	Planificación de la inspección		
	Ejecución de controles de calidad		
	Seguimiento de defectos		
Control estadístico de procesos	Recogida de datos SPC		
	Generación de gráficos de control		

	Análisis de la capacidad de los procesos	
Medidas correctoras	Seguimiento de problemas	
	Análisis de las causas	
	Supervisión de la resolución	
Documentación	Gestión de registros de calidad	
	Mantenimiento de registros de auditoría	
	Documentación de conformidad	

3.5 Gestión de existencias

Consejo: La funcionalidad de gestión de inventarios debe proporcionar una visibilidad y un control completos de todos los materiales a lo largo del proceso de producción. El sistema debe permitir el seguimiento en tiempo real, las actualizaciones automáticas y la integración con la planificación de la producción, al tiempo que mantiene registros precisos de los movimientos de materiales, el consumo y el estado de la calidad.

Requisito	Subrequisito		Notas
Materias primas	Seguimiento del nivel de existencias		
	Gestión de la ubicación		
	Seguimiento de la caducidad		
Seguimiento de WIP	Seguimiento de las fases de producción		
	Seguimiento de cantidades		
	Gestión de la ubicación		
Productos acabados	Gestión de existencias		
	Seguimiento de la ubicación de almacenamiento		

	Gestión de envíos	
Control de lotes	Asignación del número de lote	
	Seguimiento genealógico de lotes	
	Gestión del estado de los lotes	

3.6 Análisis del rendimiento

Consejo: Las capacidades de análisis del rendimiento deben proporcionar una visión completa de las operaciones de fabricación a través de la supervisión en tiempo real y el análisis histórico. El sistema debe permitir el seguimiento personalizado de los KPI, la generación automatizada de informes y el análisis detallado, así como iniciativas de mejora continua mediante la toma de decisiones basada en datos.

Requisito	Subrequisito	S/N	Notas
Seguimiento de los KPI	Cálculo OEE		
	Seguimiento de la eficacia de la producción		
	Seguimiento de las métricas de calidad		
Seguimiento de costes	Análisis de costes laborales		
	Seguimiento de los costes de material		
	Asignación de gastos generales		
Informes	Cuadros de mando en tiempo real		
	Generación de informes personalizados		
	Distribución automática de informes		

3.7 Gestión de documentos

Consejo: Las funciones de gestión de documentos deben garantizar el control de versiones, el acceso seguro y el cumplimiento de la normativa, a la vez que apoyan las operaciones de fabricación sin papel. El sistema debe mantener

historiales de revisión completos, gestionar los flujos de trabajo de aprobación y proporcionar acceso inmediato a la documentación pertinente en todas las actividades de producción.

Requisito	Subrequisito	S/N	Notas
Control de documentos	Control de versiones		
	Gestión del cambio		
	Control de acceso		
Instrucciones de trabajo	Creación y mantenimiento		
	Gestión de la distribución		
	Seguimiento de las revisiones		
Firmas electrónicas	Niveles de autorización		
	Registro de auditoría		
	Validación de la conformidad		

3.8 Gestión del mantenimiento

Consejo: La gestión del mantenimiento debe equilibrar las actividades preventivas y correctivas minimizando las interrupciones de la producción. El sistema debe permitir una planificación exhaustiva del mantenimiento, la asignación de recursos y el seguimiento del rendimiento, al tiempo que se integra con los sistemas de programación de la producción y de gestión de inventarios.

Requisito	Subrequisito	S/N	Notas
Mantenimiento preventivo	Gestión de horarios		
	Definición de tareas		
	Asignación de recursos		

Mantenimiento correctivo	Seguimiento de problemas	
	Gestión de prioridades	
	Seguimiento de la resolución	
Piezas de recambio	Gestión de existencias	
	Gestión de pedidos	
	Seguimiento de la utilización	

3.9 Capacidades de integración

Consejo: Las capacidades de integración deben permitir un flujo de datos sin fisuras entre el MES y otros sistemas de la empresa, manteniendo al mismo tiempo la integridad y la seguridad de los datos. El sistema debe permitir la comunicación bidireccional en tiempo real mediante protocolos estándar y proporcionar mecanismos sólidos de gestión y validación de errores.

Requisito	Subrequisito	S/N	Notas
Integración ERP	Intercambio bidireccional de datos		
	Sincronización del procesamiento de pedidos		
	Gestión de datos maestros		
Equipamiento de taller	Conectividad de los equipos		
	Recogida de datos en tiempo real		
	Ejecución de comandos		
Integración de SCADA	Recogida de datos de proceso		
	Integración de sistemas de control		
	Gestión de alarmas		
Integración PLM	Sincronización de datos de productos		

Gestión del cambio de diseño	
Procesar actualizaciones de enrutamiento	

3.10 Cumplimiento y gestión de la normativa

Consejo: La gestión del cumplimiento debe garantizar la adhesión a todas las normas y reglamentos pertinentes del sector, manteniendo al mismo tiempo la eficiencia operativa. El sistema debe automatizar la supervisión del cumplimiento, proporcionar pistas de auditoría exhaustivas y permitir una rápida adaptación a los cambios normativos, minimizando al mismo tiempo los requisitos de supervisión manual.

Requisito	Subrequisito	S/N	Notas
Normativa industrial	Seguimiento del cumplimiento de las normas		
	Seguimiento de las actualizaciones de la normativa		
	Verificación del cumplimiento		
Gestión de normas	Cumplimiento de las normas del sector		
	Procedimientos normalizados de trabajo		
	Cumplimiento de las normas de calidad		
Gestión de auditorías	Mantenimiento de registros de auditoría		
	Registros electrónicos de lotes		
	Registros de validación del proceso		
Mantenimiento de registros	Gestión de la conservación de datos		
	Archivo de documentos		
	Recuperación de registros		

4. Requisitos de la inteligencia artificial

4.1 IA de apoyo a la toma de decisiones

Consejo: La IA de apoyo a la toma de decisiones debe aumentar la toma de decisiones humana proporcionando ideas y recomendaciones basadas en datos. El sistema debe analizar datos históricos y en tiempo real para generar información práctica, manteniendo la transparencia en su proceso de toma de decisiones y apoyando el aprendizaje continuo a partir de los resultados.

Requisito	Subrequisito	S/N	Notas
Análisis histórico	Reconocimiento de patrones		
	Análisis de tendencias		
	Correlación de resultados		
Recomendaciones para la toma de decisiones	Sugerencias en tiempo real		
	Evaluación de riesgos		
	Análisis de impacto		
Optimización	Optimización de la asignación de recursos		
	Optimización de los parámetros del proceso		
	Optimización de horarios		

4.2 Análisis predictivo

Consejo: Las capacidades de análisis predictivo deben aprovechar múltiples fuentes de datos para predecir posibles problemas y oportunidades. El sistema debe combinar el aprendizaje automático con la experiencia en el sector para ofrecer predicciones precisas y mejorar continuamente sus modelos en función de los resultados reales.

Requisito	Subrequisito	S/N	Notas

Análisis de equipos	Predicción de fallos	
	Previsión de mantenimiento	
	Análisis de la degradación del rendimiento	
Predicción de calidad	Predicción de defectos	
	Detección de desviaciones de calidad	
	Previsión de la capacidad de los procesos	
Previsión de la demanda	Predicción de la demanda de recursos	
	Previsión de la capacidad de producción	
	Previsión de las necesidades de material	

4.3 Visión por ordenador y calidad

Consejo: Los sistemas de visión por ordenador deben proporcionar capacidades de inspección y control de calidad fiables y en tiempo real. El sistema debe integrar algoritmos avanzados de procesamiento de imágenes con aprendizaje automático para detectar defectos y variaciones al tiempo que mantiene una alta precisión en condiciones de producción variables y admite la mejora continua del modelo.

Requisito	Subrequisito	S/N	Notas
Inspección visual	Detección de defectos		
	Validación de medidas		
	Inspección de superficies		
Análisis de la calidad	Control de calidad en tiempo real		
	Clasificación de los defectos		
	Tendencias de calidad		
Supervisión de procesos	Verificación del montaje		

Validación del proceso	
Supervisión de equipos	

4.4 Optimización del proceso

Consejo: La optimización de procesos impulsada por IA debe mejorar continuamente la eficiencia de la fabricación mediante la supervisión y el ajuste en tiempo real. El sistema debe analizar simultáneamente múltiples variables del proceso para identificar las condiciones óptimas de funcionamiento, adaptándose al mismo tiempo a los requisitos y limitaciones cambiantes de la producción.

Requisito	Subrequisito	S/N	Notas
Optimización en tiempo real	Ajuste de parámetros		
	Control de procesos		
	Optimización del rendimiento		
Gestión de recetas	Optimización de recetas		
	Correlación de parámetros		
	Análisis del impacto sobre la calidad		
Optimización energética	Control del consumo		
	Optimización de la eficiencia		
	Reducción de costes		

4.5 IA en la cadena de suministro

Consejo: La IA de la cadena de suministro debe mejorar la visibilidad y la previsibilidad en toda la red de suministro. El sistema debe utilizar análisis avanzados para optimizar los niveles de inventario, predecir los patrones de demanda e identificar posibles interrupciones, al tiempo que soporta el ajuste dinámico de las estrategias de la cadena de suministro en función de las condiciones en tiempo real.

Requisito	Subrequisito	S/N	Notas
Planificación de la demanda	Previsión de la demanda		
	Reconocimiento de patrones		
	Análisis del mercado		
Optimización de inventarios	Optimización del nivel de existencias		
	Cálculo del punto de pedido		
	Optimización de las existencias de seguridad		
Gestión de proveedores	Análisis de resultados		
	Evaluación de riesgos		
	Optimización de costes		

4.6 Sistemas de autoaprendizaje

Consejo: Los sistemas de autoaprendizaje deben mejorar continuamente su rendimiento mediante el análisis automatizado de los datos operativos. El sistema debe identificar patrones y relaciones de forma autónoma, adaptarse a las condiciones cambiantes y perfeccionar sus modelos, al tiempo que mantiene la transparencia en su proceso de aprendizaje y garantiza mejoras fiables del rendimiento.

Requisito	Subrequisito	S/N	Notas
Aprendizaje continuo	Reconocimiento de patrones		
	Adaptación del modelo		
	Mejora del rendimiento		
Optimización automatizada	Ajuste de parámetros		

	Optimización del proceso	
	Asignación de recursos	
Validación del rendimiento	Control de la precisión	
	Verificación del aprendizaje	
	Detección de sesgos	

4.7 Integración del gemelo digital

Consejo: La implementación del gemelo digital debe proporcionar una representación virtual precisa de los activos y procesos de fabricación físicos. El sistema debe permitir capacidades de simulación y predicción en tiempo real, al tiempo que admite análisis hipotéticos y escenarios de optimización para mejorar la toma de decisiones y la optimización de procesos.

Requisito	Subrequisito	S/N	Notas
Modelado virtual	Modelización de equipos		
	Simulación de procesos		
	Visualización del diseño		
Sincronización en tiempo real	Actualización de datos		
	Control estatal		
	Seguimiento del rendimiento		
Capacidades de simulación	Análisis de hipótesis		
	Optimización del proceso		
	Planificación de capacidades		

4.8 Procesamiento de Inteligencia Artificial Edge

Consejo: La implementación de la IA en el perímetro debe optimizar la distribución del procesamiento entre los dispositivos periféricos y los sistemas centrales. El sistema debe permitir la toma de decisiones en tiempo real en el

perímetro, al tiempo que gestiona el ancho de banda de la red de forma eficiente y garantiza la seguridad de los datos en todas las ubicaciones de procesamiento.

Requisito	Subrequisito	S/N	Notas
Procesamiento de bordes	Análisis local		
	Procesamiento en tiempo real		
	Optimización de recursos		
Gestión de datos	Almacenamiento local		
	Filtrado de datos		
	Sincronización		
Optimización de la red	Gestión del ancho de banda		
	Resistencia de la conexión		
	Funcionamiento offline		

4.9 IA explicable

Consejo: La IA explicable debe proporcionar una comprensión clara de los procesos de toma de decisiones de la IA. El sistema debe generar explicaciones transparentes de sus recomendaciones, al tiempo que mantiene exhaustivas pistas de auditoría y respalda el cumplimiento normativo mediante vías de decisión documentadas.

Requisito	Subrequisito	S/N	Notas
Transparencia	Seguimiento de decisiones		
	Visualización lógica		
	Análisis factorial		
Interpretación	Explicación del proceso		

	Evaluación de impacto	
	Importancia de las características	
Capacidades de auditoría	Registro de decisiones	
	Pistas de verificación	
	Validación de la conformidad	

4.10 Detección de anomalías basada en IA

Consejo: La detección de anomalías debe identificar los problemas potenciales antes de que afecten a la producción, minimizando al mismo tiempo las falsas alarmas. El sistema debe combinar varios métodos de detección para garantizar una gran precisión y, al mismo tiempo, ofrecer explicaciones claras sobre las anomalías detectadas y las acciones recomendadas.

Requisito	Subrequisito	S/N	Notas
Reconocimiento de patrones	Detección de desviaciones		
	Análisis de tendencias		
	Identificación de correlaciones		
Control en tiempo real	Análisis continuo		
	Generación de alertas		
	Clasificación prioritaria		
Gestión de la respuesta	Respuesta automática		
	Procedimientos de escalada		
	Seguimiento de la resolución		

5. Requisitos de aplicación

El proveedor debe prestar servicios integrales de implantación que incluyan:

• Metodología de gestión de proyectos

- Calendario de aplicación
- Recursos necesarios
- Plan de gestión de riesgos
- Estrategia de gestión del cambio
- Metodología de las pruebas
- Programa de formación
- Plan de asistencia inicial
- Apoyo posterior a la aplicación

6. Requisitos de los proveedores

Los vendedores deben demostrar:

- Experiencia demostrada en la implantación de MES
- Experiencia en el sector
- Estabilidad financiera
- Capacidades técnicas
- Infraestructura de apoyo
- Sistemas de gestión de la calidad
- Capacidad de innovación
- Ecosistema de asociación

7. 7. Criterios de evaluación

Las propuestas se evaluarán en función de

Evaluación técnica (40%)

- Diseño arquitectónico
- Capacidad de rendimiento
- Elementos de seguridad

• Capacidad de integración

Evaluación funcional (35%)

- Gestión de la producción
- Control de calidad
- Gestión de existencias
- Gestión de documentos

Capacidades de IA (25%)

- Análisis predictivo
- Visión por ordenador
- Optimización del proceso
- Aprendizaje automático

8. 8. Normas de presentación

Las propuestas deben incluir:

- Resumen ejecutivo
- Solución técnica
- Enfoque de aplicación
- Modelo de apoyo
- Estructura de precios
- Perfil de la empresa
- Referencias de clientes
- Equipo del proyecto

9. Calendario y proceso

- Fecha de publicación de la RFP: [Fecha]
- Preguntas Plazo: [Fecha]

- Fecha límite para la presentación de propuestas: [Fecha]
- Presentaciones de proveedores: [Fecha]
- Decisión de selección: [Fecha]
- Inicio del proyecto: [Fecha]

Información de contacto: [Nombre de contacto] [Cargo] [Correo electrónico] [Teléfono]